TA-3037A, A NEW INHIBITOR OF GLUTATHIONE S-TRANSFERASE, PRODUCED BY ACTINOMYCETES

II. STRUCTURE DETERMINATION

DAISUKE KOMAGATA, YASUHIKO MURAOKA, RYUICHI SAWA, YOSHIKAZU TAKAHASHI, HIROSHI NAGANAWA, TSUTOMU SAWA and TOMIO TAKEUCHI

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received for publication January 28, 1992)

TA-3037A, a new inhibitor of glutathione S-transferase, has been isolated from the culture broth of Streptomyces sp. TA-3037. The structure of TA-3037A was defined as (Z)-3-benzylidene-3,4-dihydro-2-oxo-2H-1,4-benzoxazine-5-carboxylic acid by an analysis of spectral properties and chemical studies of TA-3037A and its derivatives.

In the preceding paper¹⁾ we have described the isolation, purification and the biological properties of TA-3037A (1), a novel inhibitor of glutathione S-transferase. In this paper, we wish to describe the structure of 1. 1 was obtained as yellow crystals. The UV and IR spectra of 1 are shown in Figs. 1 and 2, respectively. The UV spectra showed absorption maxima at 204 (log ε 4.43), 242 (4.20), 282 (3.97) and 383 nm (4.16) in EtOH, 205 (log ε 4.34), 241 (4.26), 282 (3.96), 350 (sh, 3.94) and 382 nm (4.16) in 0.03 M HCl-EtOH, and 324 nm

Fig. 1. UV spectra of TA-3037A (1).

— Neutral EtOH, ----- acidic EtOH,
—— □ alkaline EtOH.

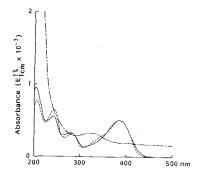
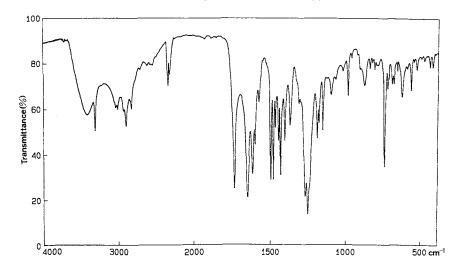



Fig. 2. IR spectrum of TA-3037A (1).

Proton	TA-3037A (1)	TA-3037A methyl ester (2)
4-NH	11.10 (1H, br s)	10.66 (1H, br s)
6-H	7.66 (1H, dd, $J=8.0, 1.5$)	7.72 (1H, dd, $J=8.0, 1.5$)
7- H	6.90 (1H, t, $J=8.0$)	6.82 (1H, t, $J=8.0$)
8-H	7.32 (1H, br dd, $J=8.0$, 1.5, <1.0)	7.21 (1H, dd, $J=8.0$, 1.5, 0.5*)
9-COOH	8.85 (1H, br s)	
10-H	6.65 (1H, s)	6.86 (1H, s)
12-H, 16-H	7.60 (2H, d, J=8.0)	7.58 (2H, d, $J = 8.0$)
13-H, 15-H	7.46 (2H, t, $J=8.0$)	7.50 (2H, t, $J = 8.0$)
14-H	7.34 (1H, t, $J=8.0$)	7.34 (1H, t, $J = 8.0$)
17-COOCH ₃		3.93 (3H, s)

¹H NMR data² for TA-3037A (1) and its methyl ester (2)

- 400 MHz; chemical shifts in ppm, coupling constants in Hz. TA-3037A was measured in DMSO- d_6 and its methyl ester was in CDCl₃.
- * Obtained by resolution enhancement method.

Table 2. 13C NMR data for TA-3037A (1) and its methyl ester (2).

Carbon	TA-3037A (1)	TA-3037A methyl ester (2) 158.0 (s)
C-2		
C-3	123.3 (s)	122.7 (s)
C-4a	129.9 (s)	130.3 (s)
C-5	112.0 (s)	111.3 (s)
C-6	126.7 (d)	126.9 (d)
C-7	118.7 (d)	118.6 (d)
C-8	120.4 (d)	121.0 (d)
C-8a	140.3 (s)	140.5 (s)
C-9	169.3 (s)	167.6 (s)
C-10	109.4 (d)	112.1 (d)
C-11	134.0 (s)	134.1 (s)
C-12, C-16	128.0 (d)	128.2 (d)
C-13, C-15	129.0 (d)	129.2 (d)
C-14	127.8 (d)	128.1 (d)
C-17	` ,	52.3 (q)

¹⁰⁰ MHz; chemical shifts in ppm. TA-3037A was measured in DMSO-d₆ and its methylester was in CDCl3.

(3.96) in 0.03 M NaOH - EtOH.

The IR spectrum (KBr) showed the absorption of the hydroxyl $(3440\,\mathrm{cm}^{-1})$, N-H $(3340\,\mathrm{cm}^{-1})$, carboxyl or lactone (1752 cm⁻¹) and aromatic derivative (1600, 1507 and 1439 cm⁻¹). The molecular formula of 1 was determined to be C16- $H_{11}NO_4$ by HRFAB-MS data (m/z) 280.0607 $(M-H)^{-}$).

Fig. 3. HMBC and NOE experiments of TA-3037A methyl ester (2).

← NOE

For an elucidation of the structure²⁾, 1 was converted to a methyl ester derivative (2) by treatment with trimethylsilyl diazomethane.

The ¹H and ¹³C NMR data of 1 and 2 are presented in Tables 1 and 2. The ¹H and ¹³C NMR spectra of 1 and 2 suggested the presence of benzylidene group and 1,2,3-trisubstituted benzene ring. The partial structure was supported by acid hydrolysis of 1 to give 3-hydroxyanthranilic acid.

The broad singlet corresponding to a carboxyl proton was observed at δ 8.85 in the ¹H NMR spectrum of 1, while in that of 2 this peak disappeared and one methoxyl peak appeared at δ 3.93 (COOCH₃).

The positional arrangement of one carbonyl group, one oxygen atom and one nitrogen atom in the heterocyclic ring of 2 was defined by $^1\text{H-detected}$ heteronuclear multiple-bond correlation (HMBC) spectra and nuclear Overhauser effect (NOE) experiments (Fig. 3). 10-H (δ 6.86)

Fig. 4. Structure of TA-3037A (1).

coupled with C-2 (δ 158.0), demonstrating the arrangement from C-10 to C-2.

Amine proton (δ 10.66) coupled with C-2 (δ 158.0), indicated the arrangement from N-4 to C-2. Amine proton (δ 10.66) also coupled with C-8a (δ 140.5) indicated the connectivity from N-4 to C-8a, which was supported by the observation of a long range coupling (${}^5J_{\rm NH,8-H}=0.5\,\rm Hz$) between amine proton (δ 10.66) and 8-H (δ 7.21). The observation of NOE between amine proton (δ 10.66) and 12-H (16-H, δ 7.58), and also between methoxyl proton (δ 3.93) and 12-H (16-H, δ 7.58) showed *cis* configuration of the double bond (between C-3 and C-10).

Thus, the structure of 1 was determined to be (Z)-3-benzylidene-3,4-dihydro-2-oxo-2H-1,4-benzoxa-zine-5-carboxylic acid (Fig. 4).

Experimental

Methylation of 1

A solution of trimethylsilyl diazomethane in hexane was added to a solution of 5 mg of 1 in the mixture of 1 ml CHCl₃ and 1 ml MeOH, and this was allowed to stand for 1 minute at room temperature. Excess reagent and solvents were removed under reduced pressure. 1: Rf 0.60, 2: Rf 0.77 (Silica gel TLC plate, Merck Art. 5715, BuOH-MeOH-H₂O, 4:1:2) 2: FAB-MS, m/z 296 (M+H)⁺. The ¹H and ¹³C NMR data are presented in Tables 1 and 2, respectively.

Hydrolysis of 1

Conc HCl (12 N, 250 μ l) was added to a solution of 1 (2 mg) in 250 μ l CH₃COOH and heated for 5 hours at 110°C in a sealed tube. The solution was concentrated to dryness. The main product was compared with the standard, 3-hydroxyanthranilic acid. Rf value of 3-hydroxyanthranilic acid was 0.72 (Silica gel TLC plate, Merck Art. 5715, BuOH - MeOH - H₂O, 4:1:2).

References

- KOMAGATA, D.; T. SAWA, Y. MURAOKA, C. IMADA, Y. OKAMI & T. TAKEUCHI: TA-3037A, a new inhibitor of glutathione S-transferase, produced by actinomycetes. I. Production, isolation, physico-chemical properties and biological activities. J. Antibiotics 45: 1117~1121, 1992
- 2) MAYAMA, S.; T. TANI, T. UENO, K. HIRABAYASHI, T. NAKASHIMA, H. FUKAMI, Y. MIZUNO & H. IRIE: Isolation and structure elucidation of genuine oat phytoalexin, avenalumin I. Tetrahedron Lett. 22: 2103~2106, 1981